STUDI LITERATURE REVIEW PERKEMBANGAN PENELITIAN ASPAL PORUS (TAHUN 2017 – 2021)

Authors

  • Hendrik Jimmyanto Program Studi Teknik Sipil, Fakultas Teknik, Universitas Tridinanti
  • Ani Firda Program Studi Teknik Sipil, Fakultas Teknik, Universitas Tridinanti
  • Hariman Al Faritzie Program Studi Teknik Sipil, Fakultas Teknik, Universitas Tridinanti
  • Indra Syahrul Fuad Program Studi Teknik Sipil, Fakultas Teknik, Universitas Tridinanti
  • Felly Misdalena Program Studi Teknik Sipil, Fakultas Teknik, Universitas Tridinanti
  • Lega Reskita Lubis Jurusan Teknik Sipil, Politeknik Negeri Sriwijaya

DOI:

https://doi.org/10.52333/lateral.v2i1.642

Keywords:

Literature Study, Porous Asphalt, Rubber, Fiber, Polymer, Filler

Abstract

Road pavement is composed of layers that are hardened with a mixture of aggregate and asphalt (flexible pavement) or aggregate and cement (rigid pavement). Each of these types of pavement has a different behavior. Environmental factors such as high rainfall can influence pavement performance where flexible pavement is very susceptible to waterlogging, therefore there is a type of porous asphalt called porous asphalt. This article discusses the results of a literature review of the development of existing porous asphalt from 2017 to 2021 using an international journal database. The results of the literature review show that there are several modifications to the porous asphalt mixture, namely by using rubber materials, polymer materials, fiber materials, and filler materials. Each of these materials produces a different performance. For this reason, further research is needed regarding the use of rubber and fiber materials in modifying porous asphalt mixtures to complete information regarding the development of porous asphalt.

References

Afonso, M. L., Dinis-Almeida, M., & Fael, C. S. (2017). Study of the porous asphalt performance with cellulosic fibres. Construction and Building Materials, 135, 104-111.

Akhtar, M. N., Al-Shamrani, A. M., Jameel, M., Khan, N. A., Ibrahim, Z., & Akhtar, J. N. (2021). Stability and permeability characteristics of porous asphalt pavement: An experimental case study. Case Studies in Construction Materials, 15, e00591.

Alber, S., Ressel, W., Liu, P., Hu, J., Wang, D., Oeser, M., ... & Steeb, H. (2018). Investigation of microstructure characteristics of porous asphalt with relevance to acoustic pavement performance. International Journal of Transportation Science and Technology, 7(3), 199-207.

Giuliani, F., Petrolo, D., Chiapponi, L., Zanini, A., & Longo, S. (2021). Advancement in measuring the hydraulic conductivity of porous asphalt pavements. Construction and Building Materials, 300, 124110.

Gupta, A., Lastra-Gonzalez, P., Rodriguez-Hernandez, J., Gonzalez, M. G., & Castro-Fresno, D. (2021). Critical assessment of new polymer-modified bitumen for porous asphalt mixtures. Construction and Building Materials, 307, 124957.

Gupta, A., Castro-Fresno, D., Lastra-Gonzalez, P., & Rodriguez-Hernandez, J. (2021). Selection of fibers to improve porous asphalt mixtures using multi-criteria analysis. Construction and Building Materials, 266, 121198.

Hemida, A., & Abdelrahman, M. (2020). Monitoring separation tendency of partial asphalt replacement by crumb rubber modifier and guayule resin. Construction and Building Materials, 251, 118967.

Hu, X., Dai, K., & Pan, P. (2019). Investigation of engineering properties and filtration characteristics of porous asphalt concrete containing activated carbon. Journal of Cleaner Production, 209, 1484-1493.

Hu, M., Li, L., & Peng, F. (2019). Laboratory investigation of OGFC-5 porous asphalt ultra-thin wearing course. Construction and Building Materials, 219, 101-110.

Huang, J., Pei, J., Li, Y., Yang, H., Li, R., Zhang, J., & Wen, Y. (2020). Investigation on aggregate particles migration characteristics of porous asphalt concrete (PAC) during vibration compaction process. Construction and Building Materials, 243, 118153.

Jiang, W., Yuan, D., Shan, J., Ye, W., Lu, H., & Sha, A. (2022). Experimental study of the performance of porous ultra-thin asphalt overlay. International Journal of Pavement Engineering, 23(6), 2049-2061.

Jimmyanto, H., Arliansyah, J., Kadarsa, E., Rahman, H., & Rosidawani, R. (2023, April). Study of the Literature on Using Natural Rubber and Crumb Rubber as Modified Materials in Hot Asphalt Mixtures. In Proceedings of the 3rd Sriwijaya International Conference on Environmental Issues, SRICOENV 2022, October 5th, 2022, Palembang, South Sumatera, Indonesia.

Kiselev, A., Zhang, H., & Liu, Z. (2021). The effect of two-phase mixing on the functional and mechanical properties of TPS/SBS-modified porous asphalt concrete. Construction and Building Materials, 270, 121841.

Lastra-González, P., Calzada-Pérez, M. Á., Castro-Fresno, D., Vega-Zamanillo, Á., & Indacoechea-Vega, I. (2017). Porous asphalt mixture with alternative aggregates and crumb-rubber modified binder at reduced temperature. Construction and Building Materials, 150, 260-267.

Liu, Z., Wang, X., Luo, S., Yang, X., & Li, Q. (2019). Asphalt mixture design for porous ultra-thin overlay. Construction and Building Materials, 217, 251-264.

Liu, Z., Zhang, H., Gong, M., & Yu, L. (2020). Effect of inherent anisotropy on transverse permeability of porous functional asphalt mixtures. Construction and Building Materials, 260, 119957.

Luo, S., Yang, X., Zhong, K., & Yin, J. (2020). Open-graded asphalt concrete grouted by latex modified cement mortar. Road Materials and Pavement Design, 21(1), 61-77.

Ma, X., Jiang, J., Zhao, Y., & Wang, H. (2021). Characterization of the interconnected pore and its relationship to the directional permeability of porous asphalt mixture. Construction and Building Materials, 269, 121233.

Preti, F., Accardo, C., Gouveia, B. C. S., Romeo, E., & Tebaldi, G. (2021). Influence of high-surface-area hydrated lime on cracking performance of open-graded asphalt mixtures. Road Materials and Pavement Design, 22(11), 2654-2660.

Qian, N., Wang, D., Li, D., & Shi, L. (2020). Three-dimensional mesoscopic permeability of porous asphalt mixture. Construction and Building Materials, 236, 117430.

Ren, J., Xu, Y., Huang, J., Wang, Y., & Jia, Z. (2021). Gradation optimization and strength mechanism of aggregate structure considering macroscopic and mesoscopic aggregate mechanical behaviour in porous asphalt mixture. Construction and Building materials, 300, 124262.

Sangiorgi, C., Eskandarsefat, S., Tataranni, P., Simone, A., Vignali, V., Lantieri, C., & Dondi, G. (2017). A complete laboratory assessment of crumb rubber porous asphalt. Construction and Building Materials, 132, 500-507.

Slebi-Acevedo, C. J., Lastra-González, P., Indacoechea-Vega, I., & Castro-Fresno, D. (2020). Laboratory assessment of porous asphalt mixtures reinforced with synthetic fibers. Construction and Building Materials, 234, 117224.

Tabaković, A., O’Prey, D., McKenna, D., & Woodward, D. (2019). Microwave self-healing technology as airfield porous asphalt friction course repair and maintenance system. Case Studies in Construction Materials, 10, e00233.

Tian, Y., Sun, L., Li, H., Zhang, H., Harvey, J., Yang, B., ... & Fu, K. (2021). Laboratory investigation on effects of solid waste filler on mechanical properties of porous asphalt mixture. Construction and building materials, 279, 122436.

Wang, X., Ren, J., Gu, X., Li, N., Tian, Z., & Chen, H. (2021). Investigation of the adhesive and cohesive properties of asphalt, mastic, and mortar in porous asphalt mixtures. Construction and Building Materials, 276, 122255.

Wang, Z., Xie, J., Gao, L., Liu, Y., & Tang, L. (2021). Three-dimensional characterization of air voids in porous asphalt concrete. Construction and Building Materials, 272, 121633.

Xu, S., Liu, X., Tabaković, A., & Schlangen, E. (2020). A novel self-healing system: Towards a sustainable porous asphalt. Journal of Cleaner Production, 259, 120815.

Yan, K., Sun, H., You, L., & Wu, S. (2020). Characteristics of waste tire rubber (WTR) and amorphous poly alpha olefin (APAO) compound modified porous asphalt mixtures. Construction and Building Materials, 253, 119071.

Yang, B., Li, H., Zhang, H., Xie, N., & Zhou, H. (2019). Laboratorial investigation on effects of microscopic void characteristics on properties of porous asphalt mixture. Construction and Building Materials, 213, 434-446.

Zhang, H., Li, H., Zhang, Y., Wang, D., Harvey, J., & Wang, H. (2018). Performance enhancement of porous asphalt pavement using red mud as alternative filler. Construction and building materials, 160, 707-713.

Zhang, K., Lim, J., Nassiri, S., Englund, K., & Li, H. (2019). Reuse of carbon fiber composite materials in porous hot mix asphalt to enhance strength and durability. Case Studies in Construction Materials, 11, e00260.

Zhang, J., Huang, W., Hao, G., Yan, C., Lv, Q., & Cai, Q. (2021). Evaluation of open-grade friction course (OGFC) mixtures with high content SBS polymer modified asphalt. Construction and Building Materials, 270, 121374.

Zhang, K., Liu, Y., Nassiri, S., Li, H., & Englund, K. (2021). Performance evaluation of porous asphalt mixture enhanced with high dosages of cured carbon fiber composite materials. Construction and Building Materials, 274, 122066.

Zhou, B., Zhang, J., Pei, J., Li, R., & Zhang, Z. (2021). Design and evaluation of high–luminance porous asphalt mixtures based on wasted glass for sponge city. Construction and Building Materials, 273, 121696.

Zhu, X., Ye, F., Cai, Y., Birgisson, B., & Lee, K. (2019). Self-healing properties of ferrite-filled open-graded friction course (OGFC) asphalt mixture after moisture damage. Journal of Cleaner Production, 232, 518-530.

Downloads

Published

2024-06-19

How to Cite

Jimmyanto, H., Firda, A., Al Faritzie , H., Fuad, I. S., Misdalena, F., & Lubis, L. R. (2024). STUDI LITERATURE REVIEW PERKEMBANGAN PENELITIAN ASPAL PORUS (TAHUN 2017 – 2021). Jurnal Teknik Sipil LATERAL, 2(1), 38–47. https://doi.org/10.52333/lateral.v2i1.642